دانلود مقاله ISI انگلیسی شماره 142788
ترجمه فارسی عنوان مقاله

بهینه سازی اندازه چند هدفه یک سیستم حرارتی خورشیدی یکپارچه با سیستم خورشیدی و هیدروژن ترکیبی از سیستم گرما و قدرت، با استفاده از الگوریتم ژنتیک

عنوان انگلیسی
Multi-objective sizing optimisation of a solar-thermal system integrated with a solar-hydrogen combined heat and power system, using genetic algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
142788 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy Conversion and Management, Volume 164, 15 May 2018, Pages 518-532

ترجمه کلمات کلیدی
سیستم مجتمع مجتمع، بهینه سازی چند هدفه، سیستم خورشیدی و هیدروژن حرارت و برق، سیستم حرارتی خورشیدی،
کلمات کلیدی انگلیسی
Integrated renewable system; Multi-objective optimisation; Solar-hydrogen combined heat and power system; Solar-thermal system;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی اندازه چند هدفه یک سیستم حرارتی خورشیدی یکپارچه با سیستم خورشیدی و هیدروژن ترکیبی از سیستم گرما و قدرت، با استفاده از الگوریتم ژنتیک

چکیده انگلیسی

A sizing multi-objective optimisation using the genetic algorithm is performed on a solar-hydrogen combined heat and power system integrated with solar-thermal collectors (SH CHP-ST) to supply both power and heat (i.e. hot water demand) to an application. A solar-hydrogen system is a renewable system with hydrogen-based storage consisting of an electrolyser, a hydrogen tank, and a fuel cell. The fuel cell generates heat while producing power that can be recovered. The heat collected from the fuel cell can be integrated with the heat supply of a renewable solar-thermal system consisting of an evacuated tube collector and a hot water storage tank. A simulation module to model the operation of the whole system is implemented in MATLAB. Energy demands and meteorological data for a remote household located in southeast Australia are considered. The sizes of the main components of the system are optimised with the objectives of maximising the overall reliability of the system, minimising the levelised cost of energy, and minimising the percentage of excess energy from the PV that is not utilised. The results show that the electric reliability of the optimal solutions in favour is always equal to 100%. The maximum thermal reliability that could be obtained is around 96%. A trade-off between the cost of energy and percentage of wasted power from PV is found.