دانلود مقاله ISI انگلیسی شماره 145471
ترجمه فارسی عنوان مقاله

مجموعه رگرسیون درخت برای انرژی باد و پیش بینی تابش خورشید

عنوان انگلیسی
Regression tree ensembles for wind energy and solar radiation prediction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
145471 2017 35 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Available online 12 September 2017

پیش نمایش مقاله
پیش نمایش مقاله  مجموعه رگرسیون درخت برای انرژی باد و پیش بینی تابش خورشید

چکیده انگلیسی

The ability of ensemble models to retain the bias of their learners while decreasing their individual variance has long made them quite attractive in a number of classification and regression problems. In this work we will study the application of Random Forest Regression (RFR), Gradient Boosted Regression (GBR) and Extreme Gradient Boosting (XGB) to global and local wind energy prediction as well as to a solar radiation problem. Besides a complete exploration of the fundamentals of RFR, GBR and XGB, we will show experimentally that ensemble methods can improve on Support Vector Regression (SVR) for individual wind farm energy prediction, that GBR and XGB are competitive when the interest lies in predicting wind energy in a much larger geographical scale and, finally, that both gradient-based ensemble methods can improve on SVR in the solar radiation problem.