دانلود مقاله ISI انگلیسی شماره 146312
ترجمه فارسی عنوان مقاله

تعریف یک اندازه گیری از کیفیت طراحی شبکه های عصبی مصنوعی بر اساس شاخص آماری کیفیت

عنوان انگلیسی
The definition of a measure of artificial neural network design quality based on a Statistical Index of Quality
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
146312 2017 23 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 255, 13 September 2017, Pages 71-76

ترجمه کلمات کلیدی
تحلیل داده ها، بهبود شبکه عصبی، مدل سازی، شاخص کیفیت عصبی،
کلمات کلیدی انگلیسی
Data analysis; Neural network improvement; Modeling; Neural quality index;
پیش نمایش مقاله
پیش نمایش مقاله  تعریف یک اندازه گیری از کیفیت طراحی شبکه های عصبی مصنوعی بر اساس شاخص آماری کیفیت

چکیده انگلیسی

This paper presents a method for determining how close a neural network (and its design) is to the systems it is intended to represent and model. The output of this method is a normalized numerical value (an index) which can be compared to other indices. It can also be used to compare one artificial neural network with another. The objective is to develop a numerical index of quality that would make it possible to compare a variety of methods and computational techniques. A brief revisit to the concept from which this paper originated is presented in section 2 (where authors summarize the Statistical Index of Quality), and the outline of the Neural Network Index of Quality is shown in subsection 3.2. Subsection 3.3 illustrates sample calculations and comparisons with other similar methods for neural network evaluation. Finally, section 4 addresses certain implications and outlines future research in pursuit of automated quality analysis of computational techniques. As proposed, the method is effective to compare different computational techniques adequately, with results close to ‘1’ for well-designed networks and results close to ‘0’ for neural networks with possible design flaws. The proposed method is designed for fixed-size, supervised artifical neural networks.