دانلود مقاله ISI انگلیسی شماره 146485
ترجمه فارسی عنوان مقاله

یک رویکرد بهینه سازی مبتنی بر کلینیک مصنوعی چند منظوره برای طراحی شبکه های نظارت بر کیفیت آب در حوضه های رودخانه

عنوان انگلیسی
A Multi-Objective Artificial Bee Colony-based optimization approach to design water quality monitoring networks in river basins
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
146485 2017 42 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Cleaner Production, Volume 166, 10 November 2017, Pages 579-589

ترجمه کلمات کلیدی
الگوریتم کلونی زنبور عسل مصنوعی، شبکه نظارت، بهینه سازی چند هدفه، سیستم اطلاعات جغرافیایی، حوضه رودخانه، کیفیت آب،
کلمات کلیدی انگلیسی
Artificial bee colony algorithm; Monitoring network; Multi-objective optimization; Geographic information system; River basin; Water quality;
پیش نمایش مقاله
پیش نمایش مقاله  یک رویکرد بهینه سازی مبتنی بر کلینیک مصنوعی چند منظوره برای طراحی شبکه های نظارت بر کیفیت آب در حوضه های رودخانه

چکیده انگلیسی

Water quality monitoring is important for the management of freshwater resources in river basins. Allocation of monitoring stations is the first step in the design of a water quality network. For this task, planning objectives are identified and a Multi-Objective Artificial Bee Colony-based optimization algorithm is designed and implemented in a Geographic Information System framework. Specifically, the number of stations is minimized in a range of values at the same time that the detection of lower compliance areas, the affected population and the relative importance of the river stretches are maximized. The estimation of pollutant parameters such as Biochemical Oxygen Demand, Faecal Coliform Bacteria or Total Dissolved Solids is performed by using the WorldQual model. This allows to objectively allocate monitoring stations to rivers where no real measurements are available, and thus it is especially relevant to allocate water quality stations for the first time. This approach has been tested on the Great Fish River basin (South Africa), finding networks improving the values of the objective functions between 22.22% and 47.83% with respect to the ones of the current network. Moreover, the solution analysis provides insightful and valuable information to the decision maker.