دانلود مقاله ISI انگلیسی شماره 157885
ترجمه فارسی عنوان مقاله

استخراج همزمان جاده ها و ساختمان ها در تصاویر تصویربرداری از راه دور با شبکه های عصبی کانولوشن

عنوان انگلیسی
Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
157885 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : ISPRS Journal of Photogrammetry and Remote Sensing, Volume 130, August 2017, Pages 139-149

ترجمه کلمات کلیدی
شبکه عصبی متقاطع، ویژگی های پایین سطح، مناطق مجاور، استخراج،
کلمات کلیدی انگلیسی
Convolutional neural network; Low-level features; Adjacent regions; Extraction;
پیش نمایش مقاله
پیش نمایش مقاله  استخراج همزمان جاده ها و ساختمان ها در تصاویر تصویربرداری از راه دور با شبکه های عصبی کانولوشن

چکیده انگلیسی

Extraction of man-made objects (e.g., roads and buildings) from remotely sensed imagery plays an important role in many urban applications (e.g., urban land use and land cover assessment, updating geographical databases, change detection, etc). This task is normally difficult due to complex data in the form of heterogeneous appearance with large intra-class and lower inter-class variations. In this work, we propose a single patch-based Convolutional Neural Network (CNN) architecture for extraction of roads and buildings from high-resolution remote sensing data. Low-level features of roads and buildings (e.g., asymmetry and compactness) of adjacent regions are integrated with Convolutional Neural Network (CNN) features during the post-processing stage to improve the performance. Experiments are conducted on two challenging datasets of high-resolution images to demonstrate the performance of the proposed network architecture and the results are compared with other patch-based network architectures. The results demonstrate the validity and superior performance of the proposed network architecture for extracting roads and buildings in urban areas.