دانلود مقاله ISI انگلیسی شماره 54458
ترجمه فارسی عنوان مقاله

بر اساس رویکرد مبتنی بر شبکه عصبی مرکزی و موجک برای تخمین موقعیت گسل یک خط انتقال

عنوان انگلیسی
Generalized neural network and wavelet transform based approach for fault location estimation of a transmission line
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
54458 2014 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 19, June 2014, Pages 322–332

ترجمه کلمات کلیدی
شبکه عصبی مرکزی، تبدیل موجک، شبکه های عصبی مصنوعی، حفاظت خط انتقال سیگنال های گذرا
کلمات کلیدی انگلیسی
Generalized neural network; Wavelet transform; Artificial neural network; Transmission line protection; Transient signals

چکیده انگلیسی

To maintain the efficient and reliable operation of power systems, it is extremely important that the transmission line faults need to be detected and located in a reliable and accurate manner. A number of mathematical and intelligent techniques are available in the literature for estimating the fault location. However, the results are not satisfactory due to the wide variation in operating conditions such as system loading level, fault inception instance, fault resistance and dc offset and harmonics contents in the transient signal of the faulted transmission line. Keeping in view of aforesaid, a new approach based on generalized neural network (GNN) with wavelet transform is presented for fault location estimation. Wavelet transform is used to extract the features of faulty current signals in terms of standard deviation. Obtained features are used as an input to the GNN model for estimating the location of fault in a given transmission systems. Results obtained from GNN model are compared with ANN and well established mathematical models and found more accurate.