دانلود مقاله ISI انگلیسی شماره 54980
ترجمه فارسی عنوان مقاله

نتایج عددی و تجربی یک روش جدید و عمومی برای ارزیابی عملکرد انرژی سیستم های حرارتی با استفاده از انرژی های تجدید پذیر

عنوان انگلیسی
Numerical and experimental results of a novel and generic methodology for energy performance evaluation of thermal systems using renewable energies
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
54980 2015 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 158, 15 November 2015, Pages 142–156

ترجمه کلمات کلیدی
سیستم های حرارتی، انرژی تجدید پذیر، برآورد عملکرد، مدل سازی پویا، شبکه های عصبی مصنوعی، تست سیستم
کلمات کلیدی انگلیسی
Thermal systems; Renewable energy; Performance estimation; Dynamic modelling; Artificial neural networks; System testing

چکیده انگلیسی

At present there is no reliable approach to model and characterize thermal systems using renewable energy for building applications based on experimental data. The results of the existing approaches are valid only for specific conditions (climate type and thermal building properties). The aim of this paper is to present a generic methodology to evaluate the energy performance of such systems. Artificial neural networks (ANNs) have proved to be suitable to tackle such complex problems, particularly when the system to be modelled is compact and cannot be divided up during the testing stage. Reliable “black box” ANN modelling is able to identify global models of the whole system without any advanced knowledge of its internal operating principles. The knowledge of the system’s global inputs and outputs is sufficient. The proposed methodology is applied to evaluate three different Solar Combisystems (SCSs) combined with a gas boiler or a heat pump (HP) as an auxiliary system. The results show that the best ANN models were able to predict with a satisfactory degree of precision, the annual energy consumption of the all systems except the SCS combined with air source HP, in different conditions, based on a learning sequence lasting only 12 days. In fact, the annual energy prediction errors were less than 10% in most cases. The methodology limitations appear in extreme boundary conditions (Barcelona climate) compared to those used during the ANN training process.