دانلود مقاله ISI انگلیسی شماره 55619
ترجمه فارسی عنوان مقاله

کنترل کننده PID تطبیقی فازی مبتنی بر PSO

عنوان انگلیسی
A PSO-based adaptive fuzzy PID-controllers
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
55619 2012 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Simulation Modelling Practice and Theory, Volume 26, August 2012, Pages 49–59

ترجمه کلمات کلیدی
کنترل کننده های فازی (FLCS)؛ بهینه سازی ازدحام ذرات (PSO)؛ برنامه نویسی تکاملی (EP)؛ انتگرال متناسب مشتق (PID)؛ آموزش Q ؛ جدایی ناپذیر از خطای مطلق (IAE)؛ توابع عضویت
کلمات کلیدی انگلیسی
Fuzzy logic controllers (FLCs); Particle swarm optimization (PSO); Evolutionary programming (EP); Proportional-integral-derivative (PID); Q-learning; Integral of Absolute Error (IAE); Membership functions
پیش نمایش مقاله
پیش نمایش مقاله  کنترل کننده PID تطبیقی فازی مبتنی بر PSO

چکیده انگلیسی

In this paper, a novel design method for determining the optimal fuzzy PID-controller parameters of active automobile suspension system using the particle swarm optimization (PSO) reinforcement evolutionary algorithm is presented. This paper demonstrated in detail how to help the PSO with Q-learning cooperation method to search efficiently the optimal fuzzy-PID controller parameters of a suspension system. The design of a fuzzy system can be formulated as a search problem in high-dimensional space where each point represents a rule set, membership functions, and the corresponding system’s behavior. In order to avoid obtaining the local optimum solution, we adopted a pure PSO global exploration method to search fuzzy-PID parameter. Later this paper explored the improved the limitation between suspension and tire deflection in active automobile suspension system with nonlinearity, which needs to be solved ride comfort and road holding ability problems, and so on. These studies presented many ideas to solve these existing problems, but they need much evolution time to obtain the solution. Motivated by above discussions this paper propose a novel algorithm which can decrease the number of evolution generation, and can also evolve the fuzzy system for obtaining a better performance.