دانلود مقاله ISI انگلیسی شماره 56938
ترجمه فارسی عنوان مقاله

ماژول ارزیابی امنیت سیستم استاتیک آنلاین با استفاده از چندپردازنده پروپترون و شبکه رادیال تابع پایه

عنوان انگلیسی
An online power system static security assessment module using multi-layer perceptron and radial basis function network
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
56938 2016 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 76, March 2016, Pages 165–173

ترجمه کلمات کلیدی
شبکه های عصبی مصنوعی، امنیت سیستم قدرت، ماژول رتبه بندی احتمالی ارزیابی امنیت
کلمات کلیدی انگلیسی
Artificial neural network; Power system security; Contingency ranking module; Security assessment

چکیده انگلیسی

Efficient contingency screening and ranking method has gained importance in modern power systems for its secure operation. This paper proposes two artificial neural networks namely multi-layer feed forward neural network (MFNN) and radial basis function network (RBFN) to realize the online power system static security assessment (PSSSA) module. To assess the severity of the system, two indices have been used, namely active power performance index and voltage performance index, which are computed using Newton–Raphson load flow (NRLF) analysis for variable loading conditions under N − 1 line outage contingencies. The proposed MFNN and RBFN models based PSSSA module, are fed with power system operating states, load conditions and N − 1 line outage contingencies as input features to train the neural network models, to predict the performance indices for unseen network conditions and rank them in descending order based on performance indices for security assessment. The proposed approaches are tested on standard IEEE 30-bus test system, where the simulation results prove its performance and robustness for power system static security assessment. The comparison of severity obtained by the neural network models and the NRLF analysis in terms of time and accuracy, signifies that the proposed model is quick, accurate and robust for power system static security evaluation for unseen network conditions. Thus, the proposed PSSSA module implemented using MFNN and RBFN models are found to be feasible for online implementation.