دانلود مقاله ISI انگلیسی شماره 57082
ترجمه فارسی عنوان مقاله

چارچوب چند منظوره یکپارچه برای بهینه سازی طراحی مبتنی بر قابلیت اطمینان با متغیرهای طراحی گسسته

عنوان انگلیسی
Integrated multiobjective framework for reliability-based design optimization with discrete design variables
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
57082 2016 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Automation in Construction, Volume 63, March 2016, Pages 162–172

ترجمه کلمات کلیدی
بهینه سازی طراحی، بهینه سازی چند منظوره، بهینه سازی ذرات ذرات، رگرسیون بردار پشتیبانی، شبیه سازی زیرمجموعه
کلمات کلیدی انگلیسی
Design optimization; Multiobjective optimization; Particle swarm optimization; Support vector regression; Subset simulation

چکیده انگلیسی

A Multiobjective Reliability-based Design Optimization (MO-RBDO) problem is of great interest as it can reveal the tradeoff between cost and reliability in the design of structures. The MO-RBDO problem, however, is computationally demanding and difficult to solve in practical situations. The present study proposes a new framework to solve the MO-RBDO problem by simultaneously minimizing the cost and associated failure probability. The proposed framework, dubbed as MO-PS2, extends and combines three methods: Multiobjective Particle Swarm Optimization (MOPSO), Support vector regression (SVR), and Subset simulation (SS). A unique retraining mechanism is developed not only to increase the accuracy of reliability estimation, but also to improve overall optimization performance. MO-PS2 relaxes restrictive assumptions required by existing methods to address practical concerns, such as discrete design variables, nonlinear and non-differentiable performance functions, and disjoint failure domains. A tower space truss example is used to illustrate the application of MO-PS2, whose performance is further validated by comparisons with conventional double-loop and single-loop approaches. The comparison results verify that MO-PS2 outperforms the conventional approaches, in terms of various criteria: solution quality, computational efficiency, performance consistency, and the accuracy of reliability estimation.