دانلود مقاله ISI انگلیسی شماره 57119
ترجمه فارسی عنوان مقاله

شکست و پیش بینی قابلیت اطمینان سیستم های موتور با استفاده از تکرار فیلتر های غیر خطی بر اساس حالت ماشین بردار حداقل مربعات با استفاده از ماشین بردار

عنوان انگلیسی
Failure and reliability prediction of engine systems using iterated nonlinear filters based state-space least square support vector machine method
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
57119 2016 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Optik - International Journal for Light and Electron Optics, Volume 127, Issue 3, February 2016, Pages 1491–1496

ترجمه کلمات کلیدی
شکست و پیش بینی قابلیت اطمینان، مدل دولت-فضایی، طبیعت تصادفی و عدم اطمینان پویا، ماشین بردار پشتیبانی از مربع حداقل، فیلترهای غیرخطی تکرار شده
کلمات کلیدی انگلیسی
Failure and reliability prediction; State-space model; Stochastic nature and dynamic uncertainty; Least square support vector machine; Iterated nonlinear filters

چکیده انگلیسی

Failure and reliability prediction in engine systems have attracted much attention over the past decades. However, this task remains challenging due to the stochastic nature and dynamic uncertainty of failure and reliability time series data. Two novel approaches for reliability prediction are developed in this study by integrating least square support vector machine (LSSVM) and the iterated nonlinear filters for updating the reliability data accurately. In the presented methods, a nonlinear state-space model is first formed based on the LSSVM and then the iterated nonlinear filters are employed to perform dynamic state estimation iteratively on reliability data with stochastic uncertainty. The suggested approaches are demonstrated with two illustrative examples from the previous literature and compared with the existing neural networks (NNs) and SVMs models. The experimental results reveal that the proposed models can result in much better reliability prediction performance than other technologies.