دانلود مقاله ISI انگلیسی شماره 57164
ترجمه فارسی عنوان مقاله

پیش بینی و تحلیل قابلیت اطمینان برای سیستم های الکترونیکی با چگالی بالا بر اساس فرایند مارکوف

عنوان انگلیسی
Thermal reliability prediction and analysis for high-density electronic systems based on the Markov process
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
57164 2016 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Microelectronics Reliability, Volume 56, January 2016, Pages 182–188

ترجمه کلمات کلیدی
سیستم های الکترونیکی، برآورد و پیش بینی قابلیت اطمینان حرارتی، روند تصادفی، نظریه مارکوف، پارامترهای ویژگی ارزیابی قابلیت اطمینان حرارتی
کلمات کلیدی انگلیسی
Electronic systems; Thermal reliability estimation and prediction; Stochastic process; Markov theory; The feature parameters of thermal reliability evaluation

چکیده انگلیسی

Thermal-mechanical fatigue is one of the main failure modes for electronic systems, particularly for high-density electronic systems with high-power components. Thermal reliability estimation and prediction have been an increasing concern for improving the safety and reliability of electronic systems. In this paper, we propose a stochastic process prediction model to estimate the thermal reliability of an electronic system based on Markov theory. We first divided the high-density electronic systems into four modules: the energy transformation and protection module, the electronic control module, the connection module, and the signal transmission and transformation module. By integrating failure and repair characteristics of the four modules, a stochastic model of thermal reliability analysis and prediction for a whole electronic system was built based on the Markov process. The feature parameters of thermal reliability evaluation, including thermal reliability, thermal failure probability, mean time between thermal faults, and thermal stable availability, were derived based on our comprehensive model. Finally, we applied the model to an indoor electronic system of DC frequency conversion conditioning. The thermal reliability was estimated and predicted using tested failure and debugging repair data. Effective methods for improving thermal reliability are presented and analyzed based on the comprehensive Markov model.