دانلود مقاله ISI انگلیسی شماره 112004
ترجمه فارسی عنوان مقاله

بهینه سازی داده های مبتنی بر تحلیل داده ها برای برنامه ریزی فرایندهای غنی شده: روش شناسی

عنوان انگلیسی
Big Data Analytics Based Optimisation for Enriched Process Planning: A Methodology
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
112004 2017 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Procedia CIRP, Volume 63, 2017, Pages 161-166

ترجمه کلمات کلیدی
تجزیه و تحلیل داده های بزرگ، برش پارامتر بهینه سازی، بهینه سازی ابزار، برنامه ریزی فرآیند غنی شده،
کلمات کلیدی انگلیسی
Big data analytics; cutting parameter optimisation; tool optimisation; enriched process planning;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی داده های مبتنی بر تحلیل داده ها برای برنامه ریزی فرایندهای غنی شده: روش شناسی

چکیده انگلیسی

To improve flexibility and accurateness of the optimisation in machining, this paper presents a big data analytics based optimisation method for enriched process planning in the concept of which cutting condition and cutting tool are optimised together and simultaneously. Within the context, the machining factors (workpiece, machining requirement, machine tool, machining process and machining result etc.) are concerned and represented by data attributes. In case that, the new machining resource, new materials and new machining tools etc., can be represented by a group of parameters, so that each machining cases can be treated by data regardless of the relevant experiments, which can enhance practicality and flexibility of potential application in real industry. Also a hybrid method combining neural networks (NN), analytic hierarchy process (AHP), and evolution based algorithm (EBA) or swarm intelligence based algorithm (SIBA) is proposed. NN based model is trained by the big data to improve the accurateness of each single objective, AHP is employed for multi-objective, and EBA or SBA is used to execute the optimising calculation.