دانلود مقاله ISI انگلیسی شماره 112808
ترجمه فارسی عنوان مقاله

محدودیت باقی مانده کمینه گروه برای تخریب تصویر با قبل از خودپسندی غیر منطقی خارجی

عنوان انگلیسی
Group sparsity residual constraint for image denoising with external nonlocal self-similarity prior
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
112808 2018 39 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 275, 31 January 2018, Pages 2294-2306

ترجمه کلمات کلیدی
انهدام تصویر، محدودیت باقی مانده کمینه گروه، خودخواهی غیرخطی، مدل مخلوط گاوسی، الگوریتم انحصاری عطف،
کلمات کلیدی انگلیسی
Image denoising; Group sparsity residual constraint; Nonlocal self-similarity; Gaussian Mixture Model; Iterative shrinkage algorithm;
پیش نمایش مقاله
پیش نمایش مقاله  محدودیت باقی مانده کمینه گروه برای تخریب تصویر با قبل از خودپسندی غیر منطقی خارجی

چکیده انگلیسی

Nonlocal image representation has been successfully used in many image-related inverse problems including denoising, deblurring and deblocking. However, most existing methods only consider the nonlocal self-similarity (NSS) prior of degraded observation image, and few methods use the NSS prior from natural images. In this paper we propose a novel method for image denoising via group sparsity residual constraint with external NSS prior (GSRC-ENSS). Different from the previous NSS prior-based denoising methods, two kinds of NSS prior (e.g., NSS priors of noisy image and natural images) are used for image denoising. In particular, to enhance the performance of image denoising, the group sparsity residual is proposed, and thus the problem of image denoising is translated into reducing the group sparsity residual. Because the groups contain a large amount of NSS information of natural images, to reduce the group sparsity residual, we obtain a good estimation of the group sparse coefficients of the original image by the external NSS prior based on Gaussian Mixture Model (GMM) learning, and the group sparse coefficients of noisy image are used to approximate the estimation. To combine these two NSS priors better, an effective iterative shrinkage algorithm is developed to solve the proposed GSRC-ENSS model. Experimental results demonstrate that the proposed GSRC-ENSS not only outperforms several state-of-the-art methods, but also delivers the best qualitative denoising results with finer details and less ringing artifacts.