دانلود مقاله ISI انگلیسی شماره 112811
ترجمه فارسی عنوان مقاله

یک تصویر فوق العاده با وضوح تصویر با استفاده از نمایندگی مشترک و خود-شباهت غیر محلی

عنوان انگلیسی
Single image super-resolution using collaborative representation and non-local self-similarity
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
112811 2018 34 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Signal Processing, Volume 149, August 2018, Pages 49-61

ترجمه کلمات کلیدی
فوق العاده رزولوشن، نمایندگی همکاری، خودخواهی غیر محلی، منظم سازی،
کلمات کلیدی انگلیسی
Super-resolution; Collaborative representation; Non-local self-similarity; Regularization;
پیش نمایش مقاله
پیش نمایش مقاله  یک تصویر فوق العاده با وضوح تصویر با استفاده از نمایندگی مشترک و خود-شباهت غیر محلی

چکیده انگلیسی

Single image super-resolution (SR) aims at generating a plausible and visually pleasing high-resolution (HR) image from a low-resolution (LR) input. In this paper, we propose an effective single image SR algorithm by using collaborative representation and exploiting non-local self-similarity of natural images. In particular, the collaborative-representation-based method is applied to build the so-called self-projection matrices from a training set of HR images. Then the learned self-projection matrices are used to establish the collaborative-representation-based regularization (CRR), which is responsible for introducing the external HR information. Furthermore, to guarantee a reliable estimation of the HR image, the non-local low-rank regularization (NLR) which exploits internal prior of images is also taken into consideration. Since the CRR term and NLR term are complementary, they are assembled together to form a new reconstruction-based framework for SR recovery. Finally, to implement the proposed framework, an iterative algorithm is designed to gradually improve the quality of the SR results. Extensive experimental results indicate that the proposed approach is capable of delivering higher quality of SR results than several state-of-the-art SR methods.