دانلود مقاله ISI انگلیسی شماره 112815
ترجمه فارسی عنوان مقاله

ترکیب لبه با محدودیت های خودمختاری غیرخطی برای یک تصویر با وضوح بالا

عنوان انگلیسی
Combining edge difference with nonlocal self-similarity constraints for single image super-resolution
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
112815 2017 48 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 249, 2 August 2017, Pages 157-170

ترجمه کلمات کلیدی
تنها تصویر فوق العاده رزولوشن، تفاوت لبه، خودخواهی غیرخطی، تانسور ساختار غیرقانونی، نمایندگی انحصاری،
کلمات کلیدی انگلیسی
Single image super-resolution; Edge difference; Nonlocal self-similarity; Nonlocal structure tensor; Sparse representation;
پیش نمایش مقاله
پیش نمایش مقاله  ترکیب لبه با محدودیت های خودمختاری غیرخطی برای یک تصویر با وضوح بالا

چکیده انگلیسی

Sparse representation based nonlocal self-similarity methods have been proved to be effective for single image super-resolution. However, as the noise level increases, these methods always lead to the aggravated blurring of image small scale structures, which means the failure to preserve the edge structures. In this paper, we propose a new single image super-resolution method by combining edge difference with nonlocal self-similarity constraints. In the proposed method, firstly, we extract the image texture feature in the main direction for dictionary learning with Principal Components Analysis (PCA) to ensure the learned subdictionaries contain the image texture structures. Then, we explore the one dimensional edge difference between LR image and degraded version (e.g., blurred, noisy, and down-sampled) of the image reconstructed by the sparse representation based nonlocal self-similarity method with the leaned PCA subdictionaries and utilize it as the edge difference constraint. Thirdly, we incorporate the edge difference constraint into the sparse representation model based nonlocal self-similarity to preserve the edge structures and nonlocal self-similarity structures simultaneously. Moreover, we propose a nonlocal structure tensor optimization model to further improve image quality, which can effectively mitigate the loss of image high-frequency texture and edge information. Experiments on natural images validate that our method outperforms other state-of-the-art methods, especially for the noise image.