دانلود مقاله ISI انگلیسی شماره 112825
ترجمه فارسی عنوان مقاله

یک الگوریتم یادگیری گام به گام برای تشخیص تغییر در تصاویر رادار دیافراگم مصنوعی

عنوان انگلیسی
A self-paced learning algorithm for change detection in synthetic aperture radar images
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
112825 2018 30 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Signal Processing, Volume 142, January 2018, Pages 375-387

پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم یادگیری گام به گام برای تشخیص تغییر در تصاویر رادار دیافراگم مصنوعی

چکیده انگلیسی

Detecting changed regions between two given synthetic aperture radar images is very important to monitor change of landscapes, change of ecosystem and so on. This can be formulated as a classification problem and addressed by learning a classifier, traditional machine learning classification methods very easily stick to local optima which can be caused by noises of data. Hence, we propose an unsupervised algorithm aiming at constructing a classifier based on self-paced learning. Self-paced learning is a recently developed supervised learning approach and has been proven to be capable to overcome effectively this shortcoming. After applying a pre-classification to the difference image, we uniformly select samples using the initial result. Then, self-paced learning is utilized to train a classifier. Finally, a filter is used based on spatial contextual information to further smooth the classification result. In order to demonstrate the efficiency of the proposed algorithm, we apply our proposed algorithm on five real synthetic aperture radar images datasets. The results obtained by our algorithm are compared with five other state-of–the-art algorithms, which demonstrates that our algorithm outperforms those state-of-the-art algorithms in terms of accuracy and robustness.