دانلود مقاله ISI انگلیسی شماره 113301
ترجمه فارسی عنوان مقاله

یک روش یادگیری عمیق برای شناسایی تصادفات رانندگی از اطلاعات رسانه های اجتماعی

عنوان انگلیسی
A deep learning approach for detecting traffic accidents from social media data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
113301 2018 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Part C: Emerging Technologies, Volume 86, January 2018, Pages 580-596

ترجمه کلمات کلیدی
تشخیص حوادث ترافیکی، توییت رسانه های اجتماعی، قوانین انجمن، یادگیری عمیق،
کلمات کلیدی انگلیسی
Traffic accident detection; Tweet; Social media; Association rules; Deep learning;
پیش نمایش مقاله
پیش نمایش مقاله  یک روش یادگیری عمیق برای شناسایی تصادفات رانندگی از اطلاعات رسانه های اجتماعی

چکیده انگلیسی

This paper employs deep learning in detecting the traffic accident from social media data. First, we thoroughly investigate the 1-year over 3 million tweet contents in two metropolitan areas: Northern Virginia and New York City. Our results show that paired tokens can capture the association rules inherent in the accident-related tweets and further increase the accuracy of the traffic accident detection. Second, two deep learning methods: Deep Belief Network (DBN) and Long Short-Term Memory (LSTM) are investigated and implemented on the extracted token. Results show that DBN can obtain an overall accuracy of 85% with about 44 individual token features and 17 paired token features. The classification results from DBN outperform those of Support Vector Machines (SVMs) and supervised Latent Dirichlet allocation (sLDA). Finally, to validate this study, we compare the accident-related tweets with both the traffic accident log on freeways and traffic data on local roads from 15,000 loop detectors. It is found that nearly 66% of the accident-related tweets can be located by the accident log and more than 80% of them can be tied to nearby abnormal traffic data. Several important issues of using Twitter to detect traffic accidents have been brought up by the comparison including the location and time bias, as well as the characteristics of influential users and hashtags.