دانلود مقاله ISI انگلیسی شماره 113327
ترجمه فارسی عنوان مقاله

یک الگوریتم مبتنی بر اتوماتیک یادگیری سلولی برای تشخیص جامعه در شبکه های پیچیده اجتماعی

عنوان انگلیسی
A new cellular learning automata-based algorithm for community detection in complex social networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
113327 2018 31 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Computational Science, Volume 24, January 2018, Pages 413-426

ترجمه کلمات کلیدی
شبکه های پیچیده تجزیه و تحلیل شبکه شبکه، تشخیص جامعه، اتوماتای ​​یادگیری، اتوماتای ​​یادگیری تلفن همراه،
کلمات کلیدی انگلیسی
Complex networks; Social network analysis; Community detection; Learning automata; Cellular learning automata;
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم مبتنی بر اتوماتیک یادگیری سلولی برای تشخیص جامعه در شبکه های پیچیده اجتماعی

چکیده انگلیسی

Community structure is one of the common and fundamental characteristics of many real-world networks such as information and social networks. The structure, function, evolution and dynamics of complex social networks can be explored through detecting the community structure of networks. In this paper, a new community detection algorithm based on cellular learning automata (CLA), in which a number of learning automata (LA) cooperate with each other, is proposed. The proposed algorithm taking advantage of irregular CLA finds a partial spanning tree and then forms the local communities on the found the partial spanning tree at each step in order to reduce the network size. As the proposed algorithm proceeds, LA are interacted with both local and global environments to modify the found communities that gradually yielded the near-optimal community structure of the network through the evolution of the CLA. To evaluate the efficiency of the proposed algorithm, several experiments are conducted on synthetic and real networks. Experimental results confirm the superiority and effectiveness of the proposed CLA-based algorithm in terms of various evaluation measures comprising Conductance, Modularity, Normalized Mutual Information, Purity and Rand-index.