دانلود مقاله ISI انگلیسی شماره 116838
ترجمه فارسی عنوان مقاله

پیش بینی الگوی و شدت نارسایی زبان پس از سکته مغزی از ضایعات ساختاری عملکردی

عنوان انگلیسی
Predicting the pattern and severity of chronic post-stroke language deficits from functionally-partitioned structural lesions
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
116838 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : NeuroImage: Clinical, Volume 19, 2018, Pages 1-13

ترجمه کلمات کلیدی
افساسی، پیش بینی، تجزیه و تحلیل مولفه اصلی، پسرفت، سکته مغزی
کلمات کلیدی انگلیسی
Aphasia; Prediction; Principal component analysis; Regression; Stroke;
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی الگوی و شدت نارسایی زبان پس از سکته مغزی از ضایعات ساختاری عملکردی

چکیده انگلیسی

There is an ever-increasing wealth of knowledge arising from basic cognitive and clinical neuroscience on how speech and language capabilities are organised in the brain. It is, therefore, timely to use this accumulated knowledge and expertise to address critical research challenges, including the ability to predict the pattern and level of language deficits found in aphasic patients (a third of all stroke cases). Previous studies have mainly focused on discriminating between broad aphasia dichotomies from purely anatomically-defined lesion information. In the current study, we developed and assessed a novel approach in which core language areas were mapped using principal component analysis in combination with correlational lesion mapping and the resultant ‘functionally-partitioned’ lesion maps were used to predict a battery of 21 individual test scores as well as aphasia subtype for 70 patients with chronic post-stroke aphasia. Specifically, we used lesion information to predict behavioural scores in regression models (cross-validated using 5-folds). The winning model was identified through the adjusted R2 (model fit to data) and performance in predicting holdout folds (generalisation to new cases). We also used logistic regression to predict fluent/non-fluent status and aphasia subtype. Functionally-partitioned models generally outperformed other models at predicting individual tests, fluency status and aphasia subtype.