دانلود مقاله ISI انگلیسی شماره 116848
ترجمه فارسی عنوان مقاله

با استفاده از تجزیه و تحلیل مولفه های اصلی برای به دست آوردن تفاوت های فردی در یک مدل عصبی روان شناختی یکپارچه از آسم پس از سکته مزمن: شناسایی همبستگی های عصبی منحصر به فرد از سخن گفتاری، واژگان و معناشناسی

عنوان انگلیسی
Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: Revealing the unique neural correlates of speech fluency, phonology and semantics
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
116848 2017 40 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Cortex, Volume 86, January 2017, Pages 275-289

ترجمه کلمات کلیدی
تفاوتهای فردی، تجزیه و تحلیل مولفه اصلی، آتشین پس از سکته مغزی، علائم معاینه ضایعه،
کلمات کلیدی انگلیسی
Individual differences; Principal component analysis; Post-stroke aphasia; Symptom–lesion mapping;
پیش نمایش مقاله
پیش نمایش مقاله  با استفاده از تجزیه و تحلیل مولفه های اصلی برای به دست آوردن تفاوت های فردی در یک مدل عصبی روان شناختی یکپارچه از آسم پس از سکته مزمن: شناسایی همبستگی های عصبی منحصر به فرد از سخن گفتاری، واژگان و معناشناسی

چکیده انگلیسی

Individual differences in the performance profiles of neuropsychologically-impaired patients are pervasive yet there is still no resolution on the best way to model and account for the variation in their behavioural impairments and the associated neural correlates. To date, researchers have generally taken one of three different approaches: a single-case study methodology in which each case is considered separately; a case-series design in which all individual patients from a small coherent group are examined and directly compared; or, group studies, in which a sample of cases are investigated as one group with the assumption that they are drawn from a homogenous category and that performance differences are of no interest. In recent research, we have developed a complementary alternative through the use of principal component analysis (PCA) of individual data from large patient cohorts. This data-driven approach not only generates a single unified model for the group as a whole (expressed in terms of the emergent principal components) but is also able to capture the individual differences between patients (in terms of their relative positions along the principal behavioural axes). We demonstrate the use of this approach by considering speech fluency, phonology and semantics in aphasia diagnosis and classification, as well as their unique neural correlates. PCA of the behavioural data from 31 patients with chronic post-stroke aphasia resulted in four statistically-independent behavioural components reflecting phonological, semantic, executive–cognitive and fluency abilities. Even after accounting for lesion volume, entering the four behavioural components simultaneously into a voxel-based correlational methodology (VBCM) analysis revealed that speech fluency (speech quanta) was uniquely correlated with left motor cortex and underlying white matter (including the anterior section of the arcuate fasciculus and the frontal aslant tract), phonological skills with regions in the superior temporal gyrus and pars opercularis, and semantics with the anterior temporal stem.