دانلود مقاله ISI انگلیسی شماره 107861
ترجمه فارسی عنوان مقاله

یک سیستم مدیریت هوشمند چند مرحله ای تحت چندین عدم اطمینان: یک روش داده کاوی

عنوان انگلیسی
A multi-stage Smart Energy Management System under multiple uncertainties: A data mining approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107861 2017 34 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Renewable Energy, Volume 102, Part A, March 2017, Pages 178-189

ترجمه کلمات کلیدی
مدیریت انرژی چند مرحله ای، الگوریتم داده کاوی، بهینه سازی چند هدفه، تصمیم گیری آفلاین و آنلاین،
کلمات کلیدی انگلیسی
Multi-stage energy management; Data mining algorithm; Multi-objective optimization; Offline and online decision making;
پیش نمایش مقاله
پیش نمایش مقاله  یک سیستم مدیریت هوشمند چند مرحله ای تحت چندین عدم اطمینان: یک روش داده کاوی

چکیده انگلیسی

Smart Energy Management Systems (SEMS) have become indispensable in Micro-Grid (MG) infrastructure for saving energy usage costs and system control considering the time-varying parameters. In this paper, a new multi-stage SEMS architecture is proposed for optimal energy management in MGs considering various resource uncertainties. The proposed SEMS performs various tasks such as data acquisition/mining/refinement, pattern recognition, learning parameters and offline/online decision making. To meet the energy consumption suitably, the multi-objective SEMS operates in multi-stage scheduling problem, i.e. day-ahead, hour-ahead, and real-time markets. Moreover, some data mining algorithms have been applied to reduce the huge amount of raw data, to recognize patterns for analysis, and to learn the given parameters. From the stochastic point of view, the proposed architecture also takes into account the uncertainties of weather conditions, energy consumption and the spot market price in the risk analysis. To handle these uncertainties, a stochastic scheduling approach which includes the mean and variance of energy cost is considered in the optimization process. The simulation results illustrate the efficiency of the proposed SEMS in different case studies.