دانلود مقاله ISI انگلیسی شماره 107862
ترجمه فارسی عنوان مقاله

یک روش داده کاوی در اندازه گیری زمان واقعی برای فرآیند تولید افزودنی پلیمر با لیتوگرافی پروجکشن تحت کنترل قرار گرفتن در معرض

عنوان انگلیسی
A data mining approach in real-time measurement for polymer additive manufacturing process with exposure controlled projection lithography
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107862 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Manufacturing Systems, Volume 43, Part 2, April 2017, Pages 271-286

ترجمه کلمات کلیدی
داده کاوی، تولید افزودنی، اندازه گیری روند واقعی در زمان واقعی برآورد سازگاری، منحنی انعطاف پذیر، یادگیری آماری، رگرسیون قوی، عکسبرداری، تداخل سنجی، مدل سنسور،
کلمات کلیدی انگلیسی
Data mining; Additive manufacturing; Real-time process measurement; Adaptive estimation; Curve fitting; Statistical learning; Robust regression; Photopolymerization; Interferometry; Sensor model;
پیش نمایش مقاله
پیش نمایش مقاله  یک روش داده کاوی در اندازه گیری زمان واقعی برای فرآیند تولید افزودنی پلیمر با لیتوگرافی پروجکشن تحت کنترل قرار گرفتن در معرض

چکیده انگلیسی

Real-time inspection and part dimensions determination during the manufacturing process can improve production of qualified parts. Exposure Controlled Projection Lithography (ECPL) is a bottom-up mask-projection additive manufacturing (AM) process, in which micro parts are fabricated from photopolymers on a stationary transparent substrate. An in-situ interferometric curing monitoring and measuring (ICM&M) system has been developed to infer the output of cured height. Successful ICM&M practice of data acquisition and analysis for retrieving useful information is central to the success of real-time measurement and control for the ECPL process. As the photopolymerization phenomena occur continuously over a range of space and time scales, the ICM&M data analysis is complicated with computation speed and cost. The large amount of video data, which is usually noisy and cumbersome, requires efficient data analysis methods to unleash the ICM&M capability. In this paper, we designed a pragmatic approach of ICM&M data mining to intelligently decipher part height across the cured part. As a data-driven measurement method, the ICM&M algorithms are strengthened by incorporating empirical values obtained from experimental observations to guarantee realistic solutions, and they are particularly useful in real time when limited resource is accessible for online computation. Experimental results indicate that the data-enabled ICM&M method could estimate the height profile of cured parts with accuracy and precision. The study exemplifies that data mining techniques can help realize the desired real time measurement for AM processes, and help unveil more insights about the process dynamics for advanced modeling and control.