دانلود مقاله ISI انگلیسی شماره 107871
ترجمه فارسی عنوان مقاله

از صفحات گسترده به مدل سازی محتوای قند: روش داده کاوی

عنوان انگلیسی
From spreadsheets to sugar content modeling: A data mining approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107871 2017 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers and Electronics in Agriculture, Volume 132, January 2017, Pages 14-20

ترجمه کلمات کلیدی
رسیدن شیر خشک، فراگیری ماشین، مدلسازی تجربی، کل شکر قابل بازیافت مدل سازی محصول،
کلمات کلیدی انگلیسی
Sugarcane ripening; Machine learning; Empirical modeling; Total recoverable sugar; Crop modeling;
پیش نمایش مقاله
پیش نمایش مقاله  از صفحات گسترده به مدل سازی محتوای قند: روش داده کاوی

چکیده انگلیسی

Sugarcane mills need sugar content estimates in advance to establish their commercial strategy. To obtain these estimates, mills rely on historical averages or maturation curves. Crop models have also been developed to provide those estimates. Leveraging mill data about fields and sugar content at harvest, we developed empirical models using different data mining techniques along with the RReliefF algorithm for feature selection. The best model was attained with Random Forest with features selected by RReliefF, having a mean absolute error of 2.02 kg Mg−1. This model outperformed Support Vector Regression and Regression Trees with and without feature selection. Models were also evaluated by the Regression Error Characteristic Curves, which showed that the best model was able to predict 90% of the observations within a precision of 5.40 kg Mg−1.