دانلود مقاله ISI انگلیسی شماره 107904
ترجمه فارسی عنوان مقاله

یک چارچوب داده کاوی در میان آژانس های چینی که سیستم بازخورد تجربه را برای شناسایی همبستگی های ذاتی در میان عوامل انسانی تجربه می کنند

عنوان انگلیسی
A data mining framework within the Chinese NPPs operating experience feedback system for identifying intrinsic correlations among human factors
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107904 2018 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Annals of Nuclear Energy, Volume 116, June 2018, Pages 163-170

ترجمه کلمات کلیدی
عوامل انسانی، همبستگی ذاتی، داده کاوی، تجزیه و تحلیل همبستگی، آنالیز خوشه ای، معاونت حقوقی انجمن،
کلمات کلیدی انگلیسی
Human factors; Intrinsic correlation; Data mining; Correlation analysis; Cluster analysis; Association rule mining;
پیش نمایش مقاله
پیش نمایش مقاله  یک چارچوب داده کاوی در میان آژانس های چینی که سیستم بازخورد تجربه را برای شناسایی همبستگی های ذاتی در میان عوامل انسانی تجربه می کنند

چکیده انگلیسی

With the continuous increase in the number of operating nuclear power plants (NPPs) in China, the amount of operating experience feedback (OEF) increases significantly. On the other hand, the safe operation of NPPs has become an urgent problem that the National Nuclear Safety Administration (NNSA) must solve. To this end, NNSA established a nationalwide OEF system to improve the safety level of NPPs and strengthen the exchange of operating experience. Analyzing the human factors events (HFEs) is an important part of OEF and it is significant to improve human performance and prevent human error. Data mining has been recognized as an effective way to analyze data. With the continuous increase in operating event reports, data mining related to nuclear safety becomes a new domain of study. In this paper, we propose a data mining framework in support of the OEF system. The framework combines three statistical approaches (i.e., correlation analysis, cluster analysis and association rule mining) for identifying intrinsic correlations among human factors: correlation analysis measures the strength of linear relationship between human factors; cluster analysis classifies human factors into relevant groups; association rule mining identifies associations and causalities among human factors. For illustration, we apply the proposed framework to 162 human factors events (screened out from 313 events collected from the OEF system), and the results reflect the feasibility and effectiveness of the framework in identifying the intrinsic correlations among human factors. Besides, further suggestions for improving human performance and preventing human errors in NPPs are also discussed.