دانلود مقاله ISI انگلیسی شماره 107976
ترجمه فارسی عنوان مقاله

یک چارچوب تجزیه و تحلیل داده های کیفیت آب جدید بر اساس داده های معدنی سری زمانی

عنوان انگلیسی
A novel water quality data analysis framework based on time-series data mining
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107976 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Environmental Management, Volume 196, 1 July 2017, Pages 365-375

ترجمه کلمات کلیدی
داده کاوی سری زمانی، مدل ابر تجزیه و تحلیل کیفیت، اندازه گیری مشابهی تشخیص آنومالی، کشف الگو،
کلمات کلیدی انگلیسی
Time-series data mining; Cloud model; Water quality analysis; Similarity measure; Anomaly detection; Pattern discovery;
پیش نمایش مقاله
پیش نمایش مقاله  یک چارچوب تجزیه و تحلیل داده های کیفیت آب جدید بر اساس داده های معدنی سری زمانی

چکیده انگلیسی

The rapid development of time-series data mining provides an emerging method for water resource management research. In this paper, based on the time-series data mining methodology, we propose a novel and general analysis framework for water quality time-series data. It consists of two parts: implementation components and common tasks of time-series data mining in water quality data. In the first part, we propose to granulate the time series into several two-dimensional normal clouds and calculate the similarities in the granulated level. On the basis of the similarity matrix, the similarity search, anomaly detection, and pattern discovery tasks in the water quality time-series instance dataset can be easily implemented in the second part. We present a case study of this analysis framework on weekly Dissolve Oxygen time-series data collected from five monitoring stations on the upper reaches of Yangtze River, China. It discovered the relationship of water quality in the mainstream and tributary as well as the main changing patterns of DO. The experimental results show that the proposed analysis framework is a feasible and efficient method to mine the hidden and valuable knowledge from water quality historical time-series data.