دانلود مقاله ISI انگلیسی شماره 110713
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل مولفه اصلی همراه با رگرسیون غیر خطی برای کاهش شیمیایی

عنوان انگلیسی
Principal component analysis coupled with nonlinear regression for chemistry reduction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110713 2018 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Combustion and Flame, Volume 187, January 2018, Pages 30-41

ترجمه کلمات کلیدی
احتراق رگرسیون غیر خطی، رگرسیون محلی، منیفولدهای کم حجم، تجزیه و تحلیل مولفه اصلی،
کلمات کلیدی انگلیسی
Combustion; Nonlinear regression; Local regression; Low-dimensional manifolds; Principal component analysis;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل مولفه اصلی همراه با رگرسیون غیر خطی برای کاهش شیمیایی

چکیده انگلیسی

Large kinetic mechanisms are required in order to accurately model combustion systems. If no parameterization of the thermo-chemical state-space is used, solution of the species transport equations can become computationally prohibitive as the resulting system involves a wide range of time and length scales. Parameterization of the thermo-chemical state-space with an a priori prescription of the dimension of the underlying manifold would lead to a reduced yet accurate description. To this end, the potential offered by Principal Component Analysis (PCA) in identifying low-dimensional manifolds is very appealing. The present work seeks to advance the understanding and application of the PC-transport approach by analyzing the ability to parameterize the thermo-chemical state with the PCA basis using nonlinear regression. In order to demonstrate the accuracy of the method within a numerical solver, unsteady perfectly stirred reactor (PSR) calculations are shown using the PC-transport approach. The PSR analysis extends previous investigations to more complex fuels (methane and propane), showing the ability of the approach to deal with relatively large kinetic mechanisms. The ability to achieve highly accurate mapping through Gaussian Process based nonlinear regression is also shown. In addition, a novel method based on local regression of the PC source terms is also investigated which leads to improved results.