دانلود مقاله ISI انگلیسی شماره 110744
ترجمه فارسی عنوان مقاله

تبعیض از تصاویر طبیعی و گرافیک کامپیوتری تولید شده بر اساس تجزیه و تحلیل چند فراکتال و رگرسیون

عنوان انگلیسی
Discrimination of natural images and computer generated graphics based on multi-fractal and regression analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110744 2017 22 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : AEU - International Journal of Electronics and Communications, Volume 71, January 2017, Pages 72-81

ترجمه کلمات کلیدی
پزشکی قانونی دیجیتال، شناسایی منبع تصویر، مولتی فرکتال، تجزیه و تحلیل رگرسیون، تصاویر طبیعی گرافیک کامپیوتری،
کلمات کلیدی انگلیسی
Digital image forensics; Image source identification; Multifractal; Regression analysis; Natural images; Computer generated graphics;
پیش نمایش مقاله
پیش نمایش مقاله  تبعیض از تصاویر طبیعی و گرافیک کامپیوتری تولید شده بر اساس تجزیه و تحلیل چند فراکتال و رگرسیون

چکیده انگلیسی

The aim of the work presented in this paper is to discriminate natural images (NI) and computer generated graphics (CG). The texture differences are analyzed to the residual images of NI and CG. The residual images are first extracted by using multiple linear regressions, and then the fitting degree of the regression model is investigated. Through the analysis of the difference of their residual images, 9 dimensions of histogram features and 9 dimensions of multi-fractal spectrum features are extracted to represent their texture differences. Combined with 6 dimensions of regression model fitness features, natural images and computer generated graphics are discriminated by using a support vector machine (SVM) classifier. Experimental results and analysis show that it can achieve an average identification accuracy of 98.69%, and it is robust against JPEG compression, rotation, additive noise and image resizing. Compared with some existed methods, the selection of features is effective and fewer features are required for representing the differences between NI and CG. Meanwhile, the classification time is significantly reduced and the robustness is maintained. It has great potential to be used in image source pipeline identification.