دانلود مقاله ISI انگلیسی شماره 110745
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل و انتخاب مدل رگرسیون برای استفاده از روش مورد استفاده با استفاده از یک روش مرحله ای

عنوان انگلیسی
Analysis and selection of a regression model for the Use Case Points method using a stepwise approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110745 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Systems and Software, Volume 125, March 2017, Pages 1-14

ترجمه کلمات کلیدی
برآورد اندازه نرم افزار، رویکرد گام به گام، رگرسیون خطی چندگانه، استفاده از موارد مورد، مجموعه داده تجزیه و تحلیل متغیرها،
کلمات کلیدی انگلیسی
Software size estimation; Stepwise approach; Multiple linear regression; Use Case Points; Dataset; Variables analysis;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل و انتخاب مدل رگرسیون برای استفاده از روش مورد استفاده با استفاده از یک روش مرحله ای

چکیده انگلیسی

The estimated size of software depends mainly on the values of the weights of unadjusted UCP, which represent a number of use cases. Moreover, all other variables (unadjusted actors' weights, technical complexity factors, and environmental complexity factors) from the UCP method also have an impact on software size and therefore cannot be omitted from the regression model. The best performing model (Model D) contains an intercept, linear terms, and squared terms. The results of several evaluation measures show that this model's estimation ability is better than that of the other models tested. Model D also performs better when compared to the UCP model, whose Sum of Squared Error was 268,620 points on Dataset 1 and 87,055 on Dataset 2. Model D achieved a greater than 90% reduction in the Sum of Squared Errors compared to the Use Case Points method on Dataset 1 and a greater than 91% reduction on Dataset 2. The medians of the Sum of Squared Errors for both methods are significantly different at the 95% confidence level (p < 0.01), while the medians for Model D (312 and 37.26) are lower than Use Case Points (3134 and 3712) on Datasets 1 and 2, respectively.