دانلود مقاله ISI انگلیسی شماره 110779
ترجمه فارسی عنوان مقاله

طبقه بندی سیب های 1-متیسی سلیلوپروپین با استفاده از اثر انگشت فلورسنت با استفاده از روش تجزیه و تحلیل خرده مقیاس های جزئی و روش انتخاب متغیر مرحله ای

عنوان انگلیسی
Classification of 1-methylcyclopropene treated apples by fluorescence fingerprint using partial least squares discriminant analysis with stepwise selectivity ratio variable selection method
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110779 2018 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Chemometrics and Intelligent Laboratory Systems, Volume 175, 15 April 2018, Pages 30-36

پیش نمایش مقاله
پیش نمایش مقاله  طبقه بندی سیب های 1-متیسی سلیلوپروپین با استفاده از اثر انگشت فلورسنت با استفاده از روش تجزیه و تحلیل خرده مقیاس های جزئی و روش انتخاب متغیر مرحله ای

In this study, we investigated the potential of using fluorescence fingerprint (FF) for nondestructive identification of apples treated with 1-methylcyclopropene (1-MCP). In total, 442 apples of two cultivars (Fuji and Orin) and different storage times (0, 4, 5, 6, and 8 months) were assessed. The classification model used in this study was built using partial least squares discriminant analysis (PLSDA) with the stepwise selectivity ratio (SR) method. The stepwise SR method is a recursive variable selection method proposed in this study. FF was capable of classifying 1-MCP-treated apples with accuracies of 91.23%, 89.74%, and 90.17% for calibration, cross-validation, and validation results, respectively. PLSDA with the stepwise SR method could identify four aggregations of wavelength conditions, which are important to the classification. In addition, a non-targeted approach was taken to screen the metabolites characterizing 1-MCP-treated and control apples by liquid chromatography-mass spectrometry (LC/MS) and nuclear magnetic resonance (NMR) spectroscopy. The observed difference in metabolic profiles may contribute to the difference in the fluorescence profiles of 1-MCP treated and control apples.