دانلود مقاله ISI انگلیسی شماره 112860
ترجمه فارسی عنوان مقاله

تشخیص تغییرات کوچک در تصاویر پزشکی و تصادفی با مقایسه عملکرد خودکار سازمانی با تشخیص انسان

عنوان انگلیسی
Detection of small changes in medical and random-dot images comparing self-organizing map performance to human detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
112860 2017 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Informatics in Medicine Unlocked, Volume 7, 2017, Pages 39-45

پیش نمایش مقاله
پیش نمایش مقاله  تشخیص تغییرات کوچک در تصاویر پزشکی و تصادفی با مقایسه عملکرد خودکار سازمانی با تشخیص انسان

چکیده انگلیسی

Radiologists use time-series of medical images to monitor the progression of a patient's conditions. They compare information gleaned from sequences of images to gain insight on progression or remission of the lesions, thus evaluating the progress of a patient's condition or response to therapy. Visual methods of determining differences between one series of images to another can be subjective or fail to detect very small differences. We propose the use of quantization errors obtained from self-organizing maps (SOM) for image content analysis. We tested this technique with MRI images to which we progressively added synthetic lesions. We have used a global approach that considers changes on the entire image as opposed to changes in segmented lesion regions only. We claim that this approach does not suffer from the limitations imposed by segmentation, which may compromise the results. Results show quantization errors increased with the increase in lesions on the images. The results are also consistent with previous studies using alternative approaches. We then compared the detectability ability of our method to that of human novice observers having to detect very small local differences in random-dot images. The quantization errors of the SOM outputs compared with correct positive rates, after subtraction of false positive rates (“guess rates”), increased noticeably and consistently with small increases in local dot size that were not detectable by humans. We conclude that our method detects very small changes in complex images and suggest that it could be implemented to assist human operators in image-based decision making.