دانلود مقاله ISI انگلیسی شماره 113525
ترجمه فارسی عنوان مقاله

تقسیم بندی رفتاری برای داده های جمع آوری اطلاعات بر اساس روش برش گراف

عنوان انگلیسی
Behavioral segmentation for human motion capture data based on graph cut method
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
113525 2017 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Visual Languages & Computing, Volume 43, December 2017, Pages 50-59

ترجمه کلمات کلیدی
داده های دستکاری حرکتی، تقسیم بندی رفتاری، برش گراف، خوشه طیفی،
کلمات کلیدی انگلیسی
Motion capture data; Behavioral segmentation; Graph cut; Spectral clustering;
پیش نمایش مقاله
پیش نمایش مقاله  تقسیم بندی رفتاری برای داده های جمع آوری اطلاعات بر اساس روش برش گراف

چکیده انگلیسی

With the development of human motion capture, realistic human motion capture data has been widely implemented to many fields. However, segmenting motion capture data sequences manually into distinct behavior is time-consuming and laborious. In this paper, we introduce an efficient unsupervised method based on graph partition for automatically segmenting motion capture data. For N-Frame motion capture data sequence, we construct an undirected, weighted graph G=G(V,E), where the node set V represent frames of motion sequence and the weight of the edge set E describes similarity between frames. In this way, behavioral segmentation problem can be transformed into graph cut problem. However, traditional graph cut problem is NP hard. By analyzing the relationship between graph cut and spectral clustering, we apply spectral clustering to the NP hard problem of graph cut. In this paper, two methods of spectral clustering, t-nearest neighbors and the Nystrom method, are employed to cluster motion capture data for getting behavioral segmentation. In addition, we define an energy function to refine the results of behavioral segmentation. Extensive experiments are conducted on the dataset of multi-behavior motion capture data from CMU database. The experimental results prove that our novel method is robust and effective.