دانلود مقاله ISI انگلیسی شماره 130884
ترجمه فارسی عنوان مقاله

اختلال مغزی استخوانی ساختاری مرتبط با سن مبتنی بر داده ها برای شناسایی حجم مغز ذاتی در طول عمر بالغین

عنوان انگلیسی
An unbiased data-driven age-related structural brain parcellation for the identification of intrinsic brain volume changes over the adult lifespan
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
130884 2018 41 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : NeuroImage, Volume 169, 1 April 2018, Pages 134-144

ترجمه کلمات کلیدی
پیری سالم تقسیم مغزی، پیش بینی مغز، تجزیه و تحلیل جزء مستقل، تجزیه و تحلیل تنوع ساختاری،
کلمات کلیدی انگلیسی
Healthy aging; Brain parcellation; Brain-age prediction; Independent component analysis; Structural co-variation analysis;
پیش نمایش مقاله
پیش نمایش مقاله  اختلال مغزی استخوانی ساختاری مرتبط با سن مبتنی بر داده ها برای شناسایی حجم مغز ذاتی در طول عمر بالغین

چکیده انگلیسی

This study aims to elucidate age-related intrinsic brain volume changes over the adult lifespan using an unbiased data-driven structural brain parcellation. Anatomical brain images from a cohort of 293 healthy volunteers ranging in age from 21 to 86 years were analyzed using independent component analysis (ICA). ICA-based parcellation identified 192 component images, of which 174 (90.6%) showed a significant negative correlation with age and with some components being more vulnerable to aging effects than others. Seven components demonstrated a convex slope with aging; 3 components had an inverted U-shaped trajectory, and 4 had a U-shaped trajectory. Linear combination of 86 components provided reliable prediction of chronological age with a mean absolute prediction error of approximately 7.2 years. Structural co-variation analysis showed strong interhemispheric, short-distance positive correlations and long-distance, inter-lobar negative correlations. Estimated network measures either exhibited a U- or an inverted U-shaped relationship with age, with the vertex occurring at approximately 45–50 years. Overall, these findings could contribute to our knowledge about healthy brain aging and could help provide a framework to distinguish the normal aging processes from that associated with age-related neurodegenerative diseases.