دانلود مقاله ISI انگلیسی شماره 140549
ترجمه فارسی عنوان مقاله

بررسی غیرخطی بودن خازنی در مدولاتورهای سیگما دلتا چند مرحله ای چند مرحله ای در مقیاس نانو

عنوان انگلیسی
Study of capacitance nonlinearity in nano-scale multi-stage MOSFET-only sigma-delta modulators
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
140549 2018 22 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : AEU - International Journal of Electronics and Communications, Volume 85, February 2018, Pages 150-158

پیش نمایش مقاله
پیش نمایش مقاله  بررسی غیرخطی بودن خازنی در مدولاتورهای سیگما دلتا چند مرحله ای چند مرحله ای در مقیاس نانو

چکیده انگلیسی

Digital integrated circuits (ICs) can be integrated in low-cost digital CMOS technologies with less number of masks than a mixed-signal CMOS technology. This property, however, limits the access to reliable analog components such as linear capacitors and linear inductors. Regardless of the CMOS process, sigma-delta (ΣΔ) modulation of analog signals can be fulfilled by using ordinary MOS devices as capacitors. Called as MOS capacitors (MOSCAPs), these elements illustrate nonlinear C-V characteristic, although the thin gate oxide layer results a high capacitance per unit area. In this article, we investigate the effect of MOS capacitance nonlinearity on the overall performance of discrete-time sigma-delta modulators. To this end, a behavioral-level model of a MOSFET-only switched-capacitor (SC) integrator is proposed, and enables characterizing the transfer behavior of MOSFET-only modulators. The proposed model is used to analyze the linearity and to select a suitable architecture for the modulator. It helps to decide proper structure of each MOSCAP depending on its significance on the output linearity. In virtue of the new model, behavioral-level simulation of a 1-V 12-bit 20MS/s MOSFET-only 2 + 2 sturdy MASH (SMASH) modulator matches well to circuit-level simulations in 90-nm digital CMOS technology. For a −1.4 dB, 19.7 kHz input and an oversampling ratio of 16, the modulator achieves over 72 dB signal-to-noise plus distortion ratio (SNDR), only 3 dB lower than a conventional design based on linear metal-insulator-metal (MIM) capacitors.