دانلود مقاله ISI انگلیسی شماره 143728
ترجمه فارسی عنوان مقاله

مصنوعات عددی در معادله متخلخل مرکزی متضاد: به همین دلیل است که به طور متوسط ​​هارمونی خود را سرزنش نکن

عنوان انگلیسی
Numerical artifacts in the Generalized Porous Medium Equation: Why harmonic averaging itself is not to blame
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
143728 2018 19 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Computational Physics, Volume 361, 15 May 2018, Pages 280-298

پیش نمایش مقاله
پیش نمایش مقاله  مصنوعات عددی در معادله متخلخل مرکزی متضاد: به همین دلیل است که به طور متوسط ​​هارمونی خود را سرزنش نکن

چکیده انگلیسی

The degenerate parabolic Generalized Porous Medium Equation (GPME) poses numerical challenges due to self-sharpening and its sharp corner solutions. For these problems, we show results for two subclasses of the GPME with differentiable k(p) with respect to p, namely the Porous Medium Equation (PME) and the superslow diffusion equation. Spurious temporal oscillations, and nonphysical locking and lagging have been reported in the literature. These issues have been attributed to harmonic averaging of the coefficient k(p) for small p, and arithmetic averaging has been suggested as an alternative. We show that harmonic averaging is not solely responsible and that an improved discretization can mitigate these issues. Here, we investigate the causes of these numerical artifacts using modified equation analysis. The modified equation framework can be used for any type of discretization. We show results for the second order finite volume method. The observed problems with harmonic averaging can be traced to two leading error terms in its modified equation. This is also illustrated numerically through a Modified Harmonic Method (MHM) that can locally modify the critical terms to remove the aforementioned numerical artifacts.