دانلود مقاله ISI انگلیسی شماره 22276
ترجمه فارسی عنوان مقاله

داده کاوی مشتریان برای قطعه بندی سبک زندگی

عنوان انگلیسی
Customer data mining for lifestyle segmentation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
22276 2012 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 39, Issue 10, August 2012, Pages 9359–9366

فهرست مطالب ترجمه فارسی
چکیده

کلمات کلیدی

1-مقدمه

2-تکامل رویکردهای قطعه بندی

3-توضیحاتی درباره شرکت استفاده شده در مطالعه موردی

4-متدولوژی

5-بخش های سبک زندگی

جدول 1- تعداد محصولات در هر خوشه.

جدول2- تعداد محصولات در هر خوشه

6- اقدامات بازاریابی

جدول 3- توزیع مشتریان توسط خوشه ها

جدول 4- توزیع مشتریان توسط خوشه ها برای فروشگاههای خاص

7-نتیجه گیری
ترجمه کلمات کلیدی
خرده فروشی - خوشه - تقسیم بندی - شیوه زندگی
کلمات کلیدی انگلیسی
Retailing, Clustering, Segmentation, Lifestyle
ترجمه چکیده
ارتباط خوب میان شرکتها و مشتریان، عامل بسیار مهمی در رقابت است. برای شرکت ها، قطعه بندی بازار، مسئله ای کلیدی در جهت توسعه و حفظ روابط صادقانه با مشتریان و همچنین برای افزایش فروش شرکت است. این مقاله، براساس سبک زندگی فروشندگان و با پشتیبانی اطلاعات استخراج شده از یک پایگاه داده ی معاملاتی بزرگ، روشی را برای قطعه بندی بازار خرده فروشی پیشنهاد می کند. با استفاده از یک الگوریتم خوشه بندی متغیر، مجموعه ای از سبدهای خرید معمول از پایگاه داده استخراج شده و برای پی بردن به سبک زندگی مشتریان استفاده شدند. مشتریان بر اساس تاریخچه خریدشان به یک بخش از سبک زندگی اختصاص داده شدند. این مطالعه با همکاری یک شرکت خرده فروشی اروپایی انجام شد.
ترجمه مقدمه
رخداد تغییرات اقتصادی و اجتماعی اخیر اروپا، بخش خرده فروشی را متحول کرده است. به طور خاص، رابطه میان شرکتها و مشتریان به طور قابل توجهی تغییر یافته است. در گذشته، شرکتها بر فروش محصولات و خدمات تمرکز می کردند، بدون اینکه در جستجوی دانش دقیقی در رابطه با مشتریانی که خدمات و محصولات را می خرند،باشند. با گسترش رقبا، جذب مشتریان جدید به قدری مشکل شد که شرکتها مجبور شدند تلاش برای حفظ مشتریان فعلی را تشدید کنند. تکامل شرایط اجتماعی و اقتصادی نیز سبک زندگی را تغییر دادو در نتیجه مشتریان تمایل کمتری برای فراگیری تمام اطلاعاتی دارند که از شرکتها دریافت می کنند.این چارچوب، منجر به این شد که شرکتها استراتژی های محصول/خدمات محور خود را به استرانژی های مشتری محور تغییر دهند. همچنین ایجاد روابط صادقانه با مشتریان نیز به یک هدف اصلی مبدل شد. در واقع، شرکتهایی که مایل به حرکت پیشگامانه هستند، بایستی به طور مداوم سطح خدمات را بهبود بخشند تا روابط تجاری خوب با مشتریان تضمین گردد. برخی از شرکتها در ساخت پایگاههای داده سرمایه گذاری کردند و لذا قادر به جمع آوری مقادیر زیادی از داده-های مرتبط با مشتریان هستند. برای هر مشتری، میلیونها داده جمع آوری می شود که آنالیز کامل تاریخچه خرید را ممکن می سازد. به هر صورت، اطلاعات به دست آمده، به ندرت در طراحی عملکرد کسب و کار مانند کمپین های بازاریابی ادغام می شوند. در واقع، در بسیاری از شرکتها، اطلاعات موجود، برای کمک به تصمیم-گیری با روشها ادغام نمی شوند. اغلب، مقدار زیاد داده ها منجر به مشکل بیش بارگذاری اطلاعات، اما ضعف در دانش می شود.تحلیلگران قادر به همگامی در مطالعه داده ها و تبدیل آن به دانش مفید برای اهداف کاربردی نیستند. تکنیک های داده کاوی (DM)، به عنوان ابزاری برای آنالیز داده های حاصل از فعالیت مشتریان که در پایگاه های داده بزرگ ذخیره شده اند، در حال افزایش هستند. می توان از این تکپنیک ها برای تشخیص الگوها و قوانین زیربنایی رفتار مشتری استفاده کرد. با این وجود همچنان استفاده از DM در بازاریابی در شرف تکوین بوده و همچنان اغلب شرکت ها از استراتژی های انبوه برای برانگیختن وفاداری مشتریان استفاده می کنند. تقسیم بندی بازاریابی مشتریان یا شناسایی گروههایی از مشتریان با الگوهای رفتاری مشابه، اغلب با یک روش تک کاره انجام می شوند که اساس تعریف تبلیغات سفارشی را تشکیل می دهد. این مقاله، روشی را برای قطعه بندی مشتریان پیشنهاد می کند که بر اساس ماهیت محصولات خریداری شده توسط مشتریان است. این روش بر اساس تکنیک های خوشه بندی است، که قطعه بندی مشتریان بر طبق شیوه زندگی شان را ممکن می سازد. ساختار بقیه مقاله به شرح زیر است. بخش 2، شامل مروری بر رویکردهای قطعه بندی است. بخش 3، شرکت مورد استفاده برای مطالعه را معرفی می کند. در بخش 4 روش ارائه شده، و در بخش 5، داده ها ارائه شده و نتایج مورد بحث قرار می گیرند. بخش 6، اقدامات بازاریابی را براساس قطعه بندی سبک زندگی پیشنهاد می کند. این مقاله با نتیجه گیری پایان می یابد.
پیش نمایش مقاله
پیش نمایش مقاله  داده کاوی مشتریان برای قطعه بندی سبک زندگی

چکیده انگلیسی

A good relationship between companies and customers is a crucial factor of competitiveness. Market segmentation is a key issue for companies to develop and maintain loyal relationships with customers as well as to promote the increase of company sales. This paper proposes a method for market segmentation in retailing based on customers’ lifestyle, supported by information extracted from a large transactional database. A set of typical shopping baskets are mined from the database, using a variable clustering algorithm, and these are used to infer customers lifestyle. Customers are assigned to a lifestyle segment based on their purchases history. This study is done in collaboration with an European retailing company.

مقدمه انگلیسی

The recent economic and social changes that occurred in Europe transformed the retailing sector. In particular, the relationship between companies and customers changed significantly. In the past, companies focused on selling products and services without searching detailed knowledge concerning the customers who bought the products and services. With the proliferation of competitors, it became more difficult to attract new customers, such that companies had to intensify efforts to keep current consumers. The evolution of social and economic conditions also changed lifestyles, and as a result customers are less inclined to absorb all the information they receive from the companies. This context led companies to evolve from product/service-centered strategies to customer-centered strategies. The establishment of loyalty relationships with customers also became a main strategic goal. Indeed, companies wishing to be at the leading edge have to continually improve the service levels in order to ensure a good business relationship with customers. Some companies invested in building databases that are able to collect a big amount of customer-related data. For each customer, millions of data objects are collected, allowing the analysis of the complete purchasing history. However, the information obtained is seldom integrated in the design of business functions such as marketing campaigns. In fact, in most companies the information available is not integrated in procedures to aid decision making. The overwhelming amounts of data have often resulted in the problem of information overload but knowledge starvation. Analysts are not being able to keep pace to study the data and turn it into useful knowledge for application purposes. Data mining (DM) techniques are rising as tools to analyze data resulting from customers’ activity, stored in large databases. They can be applied in order to detect significant patterns and rules underlying consumer behavior. However, the use of DM in marketing is still incipient and most companies still use mass strategies to instigate customers loyalty. The marketing segmentation of customers or the identification of customer groups with similar behavior patterns is often done in an ad-hoc way, which constitutes the basis for the definition of customized promotions. This paper proposes a method for customers segmentation, informed by the nature of the products purchased by customers. This method is based on clustering techniques, which enable segmenting customers according to their lifestyles. The structure of the remainder of the paper is as follows. Section 2 includes a review of segmentation approaches. Section 3 introduces the company used as case study. Section 4 includes a presentation of the methodology, and Section 5 presents the data and discusses the results. Section 6 suggests marketing actions based on the lifestyle segmentation. The paper finishes with the conclusion.

نتیجه گیری انگلیسی

Customers segmentation can be used to support companies’ strategic actions and promote competitiveness. Recognizing customers’ differences can be the key to successful marketing, since it can lead to a more effective satisfaction of customers’ needs. This paper segmented customers of an European retailing company according to their lifestyle and proposed promotional policies tailored to customers from each segment, aiming to reinforce loyal relationships and increase sales. Data mining tools allowed to identify typical shopping baskets based on transactional records stored in the company loyalty card database. These typical shopping baskets were identified using a divisive cluster analysis technique, which considers the correlation between the products purchased. As a result, the products were grouped into six clusters. The methodology also involved the inference of the lifestyle corresponding to each cluster of products, by analyzing the type of products included in each cluster. In particular, it was analysed the business unit, the category and the position of the product brand concerning the value. Each customer was then assigned to the segment whose shopping basket is more similar to the customer’s past purchases. The research described in this paper also identified some marketing actions, such as customized promotional campaigns, adjustment of stores’ range of products and adjustment of stores’ layout, that can help to reinforce the relationship between companies and customers.