دانلود مقاله ISI انگلیسی شماره 42592
ترجمه فارسی عنوان مقاله

به رسمیت شناختن فعالیت با استخراج الگوهای مکرر موزون در محیط های هوشمند

عنوان انگلیسی
Activity recognition with weighted frequent patterns mining in smart environments
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
42592 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 42, Issues 17–18, October 2015, Pages 6423–6432

ترجمه کلمات کلیدی
داده کاوی - قانون رابطه - به رسمیت شناختن فعالیت - وزن جهانی و محلی - محیط هوشمند
کلمات کلیدی انگلیسی
Data mining; Association rule; Activity recognition; Global and local weight; Smart environments
پیش نمایش مقاله
پیش نمایش مقاله  به رسمیت شناختن فعالیت با استخراج الگوهای مکرر موزون در محیط های هوشمند

چکیده انگلیسی

In the past decades, activity recognition has aroused a great interest for the research groups majoring in context-awareness computing and human behaviours monitoring. However, the correlations between the activities and their frequent patterns have never been directly addressed by traditional activity recognition techniques. As a result, activities that trigger the same set of sensors are difficult to differentiate, even though they present different patterns such as different frequencies of the sensor events. In this paper, we propose an efficient association rule mining technique to find the association rules between the activities and their frequent patterns, and build an activity classifier based on these association rules. We also address the classification of overlapped activities by incorporating the global and local weight of the patterns. The experiment results using publicly available dataset demonstrate that our method is able to achieve better performance than traditional recognition methods such as Decision Tree, Naive Bayesian and HMM. Comparison studies show that the proposed association rule mining method is efficient, and we can further improve the activity recognition accuracy by considering global and local weight of frequent patterns of activities.