دانلود مقاله ISI انگلیسی شماره 46035
ترجمه فارسی عنوان مقاله

داده کاوی کارآمد برای الگوی باینری محلی در تجزیه و تحلیل بافت تصویر

عنوان انگلیسی
Efficient data mining for local binary pattern in texture image analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46035 2015 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 42, Issue 9, 1 June 2015, Pages 4529–4539

ترجمه کلمات کلیدی
الگوی باینری محلی - بافت تصویر - انتخاب ویژگی - تقسیم بندی
کلمات کلیدی انگلیسی
Local binary pattern; Frequent pattern mining; Texture image; Feature selection; Classification
پیش نمایش مقاله
پیش نمایش مقاله  داده کاوی کارآمد برای الگوی باینری محلی در تجزیه و تحلیل بافت تصویر

چکیده انگلیسی

Local binary pattern (LBP) is a simple gray scale descriptor to characterize the local distribution of the gray levels in an image. Multi-resolution LBP and/or combinations of the LBPs have shown to be effective in texture image analysis. However, it is unclear what resolutions or combinations to choose for texture analysis. Examining all the possible cases is impractical and intractable due to the exponential growth in a feature space. This limits the accuracy and time- and space-efficiency of LBP. Here, we propose a data mining approach for LBP, which efficiently explores a high-dimensional feature space and finds a relatively smaller number of discriminative features. The features can be any combinations of LBPs. These may not be achievable with conventional approaches. Hence, our approach not only fully utilizes the capability of LBP but also maintains the low computational complexity. We incorporated three different descriptors (LBP, local contrast measure, and local directional derivative measure) with three spatial resolutions and evaluated our approach using two comprehensive texture databases. The results demonstrated the effectiveness and robustness of our approach to different experimental designs and texture images.