دانلود مقاله ISI انگلیسی شماره 46036
ترجمه فارسی عنوان مقاله

پیش بینی بقای کلی در همبودی سرطان: یک رویکرد داده کاوی

عنوان انگلیسی
Predicting overall survivability in comorbidity of cancers: A data mining approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46036 2015 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 74, June 2015, Pages 150–161

ترجمه کلمات کلیدی
تصمیم گیری های پزشکی - همبودی - بیماری های همزمان - بیماریهای همراه - مدل سازی پیش بینی - جنگل های تصادفی
کلمات کلیدی انگلیسی
Medical decision making; Comorbidity; Concurrent diseases; Concomitant diseases; Predictive modeling; Random forest
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی بقای کلی در همبودی سرطان: یک رویکرد داده کاوی

چکیده انگلیسی

Cancer and other chronic diseases have constituted (and will do so at an increasing pace) a significant portion of healthcare costs in the United States in recent years. Although prior research has shown that diagnostic and treatment recommendations might be altered based on the severity of comorbidities, chronic diseases are still being investigated in isolation from one another in most cases. To illustrate the significance of concurrent chronic diseases in the course of treatment, this study uses SEER's cancer data to create two comorbid data sets: one for breast and female genital cancers and another for prostate and urinal cancers. Several popular machine learning techniques are then applied to the resultant data sets to build predictive models. Comparison of the results shows that having more information about comorbid conditions of patients can improve models' predictive power, which in turn, can help practitioners make better diagnostic and treatment decisions. Therefore, proper identification, recording, and use of patients' comorbidity status can potentially lower treatment costs and ease the healthcare related economic challenges.