دانلود مقاله ISI انگلیسی شماره 46643
ترجمه فارسی عنوان مقاله

پیش بینی ریزش بهبود در صنعت مخابرات با استفاده از تکنیک های داده کاوی

عنوان انگلیسی
Improved churn prediction in telecommunication industry using data mining techniques
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46643 2014 19 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 24, November 2014, Pages 994–1012

ترجمه کلمات کلیدی
مخابرات - درخت های تصمیم گیری - داده کاوی
کلمات کلیدی انگلیسی
Telecommunication; Churn prediction; ANN; KNN; SVM; Decision tree
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی ریزش بهبود در صنعت مخابرات با استفاده از تکنیک های داده کاوی

چکیده انگلیسی

To survive in today's telecommunication business it is imperative to distinguish customers who are not reluctant to move toward a competitor. Therefore, customer churn prediction has become an essential issue in telecommunication business. In such competitive business a reliable customer predictor will be regarded priceless. This paper has employed data mining classification techniques including Decision Tree, Artificial Neural Networks, K-Nearest Neighbors, and Support Vector Machine so as to compare their performances. Using the data of an Iranian mobile company, not only were these techniques experienced and compared to one another, but also we have drawn a parallel between some different prominent data mining software. Analyzing the techniques’ behavior and coming to know their specialties, we proposed a hybrid methodology which made considerable improvements to the value of some of the evaluations metrics. The proposed methodology results showed that above 95% accuracy for Recall and Precision is easily achievable. Apart from that a new methodology for extracting influential features in dataset was introduced and experienced.