دانلود مقاله ISI انگلیسی شماره 46688
ترجمه فارسی عنوان مقاله

یک روش داده کاوی برای کشف الگوهای پنجره باز و رفتار بسته شدن در دفاتر

عنوان انگلیسی
A data-mining approach to discover patterns of window opening and closing behavior in offices
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46688 2014 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Building and Environment, Volume 82, December 2014, Pages 726–739

ترجمه کلمات کلیدی
داده کاوی - الگوی رفتاری - رفتار مستاجر - ساختمان های اداری - بسته شدن پنجره - باز کردن پنجره
کلمات کلیدی انگلیسی
Data mining; Behavioral pattern; Occupant behavior; Office buildings; Window closing; Window opening
پیش نمایش مقاله
پیش نمایش مقاله  یک روش داده کاوی برای کشف الگوهای پنجره باز و رفتار بسته شدن در دفاتر

چکیده انگلیسی

Understanding the relationship between occupant behaviors and building energy consumption is one of the most effective ways to bridge the gap between predicted and actual energy consumption in buildings. However effective methodologies to remove the impact of other variables on building energy consumption and isolate the leverage of the human factor precisely are still poorly investigated. Moreover, the effectiveness of statistical and data mining approaches in finding meaningful correlations in data is largely undiscussed in literature. This study develops a framework combining statistical analysis with two data-mining techniques, cluster analysis and association rules mining, to identify valid window operational patterns in measured data. Analyses are performed on a data set with measured indoor and outdoor physical parameters and human interaction with operable windows in 16 offices. Logistic regression was first used to identify factors influencing window opening and closing behavior. Clustering procedures were employed to obtain distinct behavioral patterns, including motivational, opening duration, interactivity and window position patterns. Finally the clustered patterns constituted a base for association rules segmenting the window opening behaviors into two archetypal office user profiles for which different natural ventilation strategies as well as robust building design recommendations that may be appropriate. Moreover, discerned working user profiles represent more accurate input to building energy modeling programs, to investigate the impacts of typical window opening behavior scenarios on energy use, thermal comfort and productivity in office buildings.