دانلود مقاله ISI انگلیسی شماره 46698
ترجمه فارسی عنوان مقاله

الگوریتم هیوریستیک مبتنی بر خوشه بندی سلسله مراتبی بدون نظارت برای آموزش تسهیل شده سیستم های جداسازی مصرف برق

عنوان انگلیسی
An unsupervised hierarchical clustering based heuristic algorithm for facilitated training of electricity consumption disaggregation systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46698 2014 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advanced Engineering Informatics, Volume 28, Issue 4, October 2014, Pages 311–326

ترجمه کلمات کلیدی
خوشه بندی - آموزش بدون نظارت - نظارت بر بار غیر سرزده - آموزش
کلمات کلیدی انگلیسی
Clustering; Unsupervised learning; Non-intrusive load monitoring; Training
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم هیوریستیک مبتنی بر خوشه بندی سلسله مراتبی بدون نظارت برای آموزش تسهیل شده سیستم های جداسازی مصرف برق

چکیده انگلیسی

Provision of training data sets is one of the core requirements for event-based supervised NILM (Non-Intrusive Load Monitoring) algorithms. Due to diversity in appliances’ technologies, in-situ training by users is often required. This process might require continuous user-interaction to ensure that a high quality training data set is provided. Pre-populating a training data set could potentially reduce the need for user-system interaction. In this study, a heuristic unsupervised clustering algorithm is presented and evaluated to enable autonomous partitioning of appliances signature space (i.e. feature space) for applications in electricity consumption disaggregation. The algorithm is based on hierarchical clustering and uses the characteristics of a cluster binary tree to determine the distance threshold for pruning the tree without a priori information. The algorithm determines the partition of a feature space recursively to account for multi-scale nature of the binary cluster tree. Evaluation of the algorithm was carried out using metrics for accuracy and cluster quality (proposed in this study) on a fully labeled data set that was collected and processed in a real residential setting. The algorithm performance in accurate partitioning of the feature space and the effect of different feature extraction techniques were presented and discussed.