دانلود مقاله ISI انگلیسی شماره 46709
ترجمه فارسی عنوان مقاله

کوپلینگ یک رویکرد الگوریتم ژنتیک و شبیه ساز رویداد گسسته برای طراحی مدل مختلط خطوط مونتاژ بدون گام با ایستگاه های کاری موازی و بار کار تصادفی

عنوان انگلیسی
Coupling a genetic algorithm approach and a discrete event simulator to design mixed-model un-paced assembly lines with parallel workstations and stochastic task times
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46709 2015 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Production Economics, Volume 159, January 2015, Pages 319–333

ترجمه کلمات کلیدی
خط مونتاژ مدل مخلوط - متعادل کننده - خطوط ناهمگام - بار کار تصادفی - موازی - شبیه سازی رویداد گسسته
کلمات کلیدی انگلیسی
Mixed-model assembly line; Balancing; Un-paced lines; Asynchronous lines; Stochastic task times; Paralleling; Discrete event simulation
پیش نمایش مقاله
پیش نمایش مقاله  کوپلینگ یک رویکرد الگوریتم ژنتیک و شبیه ساز رویداد گسسته برای طراحی مدل مختلط خطوط مونتاژ بدون گام با ایستگاه های کاری موازی و بار کار تصادفی

چکیده انگلیسی

In the paper, an innovative approach to deal with the Mixed Model Assembly Line Balancing Problem (MALBP) with stochastic task times and parallel workstations is presented. At the current stage of research, advances in solving realistic and complex assembly line balancing problem, as the one analyzed, are often limited by the poor capability to effectively evaluate the line throughput. Although algorithms are potentially able to consider many features of realistic problems and to effectively explore the solution space, a lack of precision in their objective function evaluation (which usually includes a performance parameter, as the throughput) limits in fact their capability to find good solutions. Traditionally, algorithms use indirect measures of throughput (such as workload smoothness), that are easy to calculate, but whose correlation with the throughput is often poor, especially when the complexity of the problem increases. Algorithms are thus substantially driven towards wrong objectives. The aim of this paper is to show how a decisive step forward can be done in this filed by coupling the most recent advances of simulation techniques with a genetic algorithm approach. A parametric simulator, developed under the event/object oriented paradigm, has been embedded in a genetic algorithm for the evaluation of the objective function, which contains the simulated throughput. The results of an ample simulation study, in which the proposed approach has been compared with other two traditional approaches from the literature, demonstrate that significant improvements are obtainable.