دانلود مقاله ISI انگلیسی شماره 46741
ترجمه فارسی عنوان مقاله

طبقه بندی متن با استفاده از ویژگی های معنایی نهفته با محوریت الگوریتم ژنتیک محور

عنوان انگلیسی
Text classification using genetic algorithm oriented latent semantic features
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46741 2014 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 41, Issue 13, 1 October 2014, Pages 5938–5947

ترجمه کلمات کلیدی
انتخاب ویژگی - الگوریتم ژنتیک - نمایه سازی معنایی نهفته - طبقه بندی متن
کلمات کلیدی انگلیسی
Feature selection; Genetic algorithm; Latent semantic indexing; Text classification
پیش نمایش مقاله
پیش نمایش مقاله   طبقه بندی متن با استفاده از  ویژگی های معنایی نهفته با محوریت الگوریتم ژنتیک محور

چکیده انگلیسی

In this paper, genetic algorithm oriented latent semantic features (GALSF) are proposed to obtain better representation of documents in text classification. The proposed approach consists of feature selection and feature transformation stages. The first stage is carried out using the state-of-the-art filter-based methods. The second stage employs latent semantic indexing (LSI) empowered by genetic algorithm such that a better projection is attained using appropriate singular vectors, which are not limited to the ones corresponding to the largest singular values, unlike standard LSI approach. In this way, the singular vectors with small singular values may also be used for projection whereas the vectors with large singular values may be eliminated as well to obtain better discrimination. Experimental results demonstrate that GALSF outperforms both LSI and filter-based feature selection methods on benchmark datasets for various feature dimensions.