دانلود مقاله ISI انگلیسی شماره 46752
ترجمه فارسی عنوان مقاله

الگوریتم ژنتیک کاهش منطقه بر مبنای آنتروپی برای تخصیص افزونگی قابلیت اطمینان در محیط با بازه زمانی

عنوان انگلیسی
Entropy based region reducing genetic algorithm for reliability redundancy allocation in interval environment
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46752 2014 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 41, Issue 14, 15 October 2014, Pages 6147–6160

ترجمه کلمات کلیدی
چندهدفه - الگوریتم ژنتیک - قابلیت اطمینان - رفع اشکالات - آنتروپی - تعداد فاصله
کلمات کلیدی انگلیسی
Multi-objective; Genetic algorithm; Reliability; Redundancy; Entropy; Interval number
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم ژنتیک کاهش منطقه بر مبنای آنتروپی برای تخصیص افزونگی قابلیت اطمینان در محیط با بازه زمانی

چکیده انگلیسی

This research paper presents a multi-objective reliability redundancy allocation problem for optimum system reliability and system cost with limitation on entropy of the system which is very essential for effective sustainability. Both crisp and interval-valued system parameters are considered for better realization of the model in more realistic sense. We propose that the system cost of the redundancy allocation problem depends on reliability of the components. A subpopulation and entropy based region reducing genetic algorithm (GA) with Laplace crossover and power mutation is proposed to determine the optimum number of redundant components at each stage of the system. The approach is demonstrated through the case study of a break lining manufacturing plant. A comprehensive study is conducted for comparing the performance of the proposed GA with the single-population based standard GA by evaluating the optimum system reliability and system cost with the optimum number of redundant components. Set of numerical examples are provided to illustrate the effectiveness of the redundancy allocation model based on the proposed optimization technique. We present a brief discussion on change of the system using graphical phenomenon due to the changes of parameters of the system. Comparative performance studies of the proposed GA with the standard GA demonstrate that the proposed GA is promising to solve the reliability redundancy optimization problem providing better optimum system reliability.