دانلود مقاله ISI انگلیسی شماره 46768
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل رگرسیون مبتنی بر مجموعه از داده های پزشکی چند رسانه ای برای تشخیص استئوپروز

عنوان انگلیسی
Ensemble-based regression analysis of multimodal medical data for osteopenia diagnosis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46768 2013 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 40, Issue 2, 1 February 2013, Pages 811–819

ترجمه کلمات کلیدی
سیستم های مبتنی بر گروه - رگرسیون - غربالگری پوکی استخوان - CT تشخیصی - تراکم مواد معدنی استخوان ناحیه ای
کلمات کلیدی انگلیسی
Ensemble-based systems; Regression; Osteoporosis screening; Diagnostic CT; Areal bone mineral density
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل رگرسیون مبتنی بر مجموعه از داده های پزشکی چند رسانه ای برای تشخیص استئوپروز

چکیده انگلیسی

Areal bone mineral density (aBMD) is used in clinical practice to diagnose osteoporosis. In previous studies, aBMD was estimated from diagnostic computed tomography (dCT) images, but a battery of medical tests was also taken that can be used to improve the regression performance. However, it is difficult to exploit the multimodal data as the additional features have poor informativeness and may lead to overfitting. An ensemble-based framework is proposed to improve the regression accuracy and robustness on multimodal medical data with a high relative dimensionality. Instead of case-wise bootstrap aggregating, a filtering-based metalearner scheme was employed to build feature-wise ensembles. The proposed approach was evaluated on clinical data and was found to be superior to bagging and other ensemble methods. The feature-wise ensembling approach can also be used to automatically determine if any multimodal features are related to bone mineral density. Several blood measurements were identified to be linked with bone mineral density, and a literature search supported the automatic identification results.