دانلود مقاله ISI انگلیسی شماره 92788
ترجمه فارسی عنوان مقاله

یک چارچوب ابتکاری برای طراحی ساختارهای الگوریتم ژنتیکی

عنوان انگلیسی
An innovative framework for designing genetic algorithm structures
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92788 2017 25 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 90, 30 December 2017, Pages 196-208

ترجمه کلمات کلیدی
ساختار الگوریتم ژنتیک نوآورانه، بهینه سازی جهانی، مکانیسم راه اندازی مجدد سازگار، استراتژی برای تولید راه حل های محلی، اکتشاف و استثمار،
کلمات کلیدی انگلیسی
Innovative genetic algorithm structure; Global optimization; Adaptive restarting mechanism; Strategy for generating local solutions; Exploration and exploitation;
پیش نمایش مقاله
پیش نمایش مقاله  یک چارچوب ابتکاری برای طراحی ساختارهای الگوریتم ژنتیکی

چکیده انگلیسی

Genetic Algorithms are popular optimization algorithms, often used to solve complex large scale optimization problems in many fields. Like other meta-heuristic algorithms, Genetic Algorithms can only provide a probabilistic guarantee of the global optimal solution. Having a Genetic Algorithm (GA) capable of finding the global optimal solution with high success probability is always desirable. In this article, an innovative framework for designing an effective GA structure that can enhance the GA's success probability of finding the global optimal solution is proposed. The GA designed with the proposed framework has three innovations. First, the GA is capable of restarting its search process, based on adaptive condition, to jump out of local optima, if being trapped, to enhance the GA's exploration. Second, the GA has a local solution generation module which is integrated in the GA loop to enhance the GA's exploitation. Third, a systematic method based on Taguchi Experimental Design is proposed to tune the GA parameter set to balance the exploration and exploitation to enhance the GA capability of finding the global optimal solution. Effectiveness of the proposed framework is validated in 20 large-scale case study problems in which the GA designed by the proposed framework always outperforms five other algorithms available in the global optimization literature.