دانلود مقاله ISI انگلیسی شماره 92798
ترجمه فارسی عنوان مقاله

یک الگوریتم ژنتیک کارآمد برای برنامه ریزی در مقیاس بزرگ شبکه های بی سیم صنعتی و قوی

عنوان انگلیسی
An efficient genetic algorithm for large-scale planning of dense and robust industrial wireless networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92798 2018 39 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 96, 15 April 2018, Pages 311-329

ترجمه کلمات کلیدی
الگوریتم ژنتیک، بهینه سازی در مقیاس بزرگ، استقرار شبکه بی سیم، اینترنت چیزها، سیستم های فیزیکی سایبری،
کلمات کلیدی انگلیسی
Genetic algorithms; Large-scale optimization; Wireless network deployment; Internet of things; Cyber physical systems;
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم ژنتیک کارآمد برای برنامه ریزی در مقیاس بزرگ شبکه های بی سیم صنعتی و قوی

چکیده انگلیسی

With the penetration of Internet of things in manufacturing industry, it is an unavoidable issue to maintain robust wireless connections among machines and human workers in harsh industrial environments. However, the existing wireless planning tools focus on office environments, which are less harsh than industrial environments regarding shadowing effects of diverse obstacles. To fill this gap, this paper proposes an over-dimensioning (OD) model, which automates the decision making on deploying a robust industrial wireless local area network (IWLAN). This model creates two full coverage layers while minimizing the deployment cost, and guaranteeing a minimal separation distance between two access points (APs) to prevent APs that cover the same region from being simultaneously shadowed by an obstacle. Moreover, an empirical one-slope path loss model, which considers three-dimensional obstacle shadowing effects, is proposed for simple yet precise coverage calculation. To solve this OD model even at a large size, an efficient genetic algorithm based over-dimensioning (GAOD) algorithm is designed. Genetic operators, parallelism, and speedup measures are tailored to enable large-scale optimization. A greedy heuristic based over-dimensioning (GHOD) algorithm is further proposed, as a state-of-the-art heuristic benchmark algorithm. In small- and large-size OD problems based on industrial data, the GAOD was demonstrated to be 20%–25% more economical than benchmark algorithms for OD in the same environment. The effectiveness of GAOD was further experimentally validated with a real deployment system. Though this paper focuses on an IWLAN, the proposed GAOD can serve as a decision making tool for deploying other types of robust industrial wireless networks in terms of coverage, such as wireless sensor networks and radio-frequency identification (RFID) networks.