دانلود مقاله ISI انگلیسی شماره 92812
ترجمه فارسی عنوان مقاله

الگوریتم ژنتیک برای شبیه سازی داده های باینری همبسته از تحقیقات زیست پزشکی

عنوان انگلیسی
A genetic algorithm for simulating correlated binary data from biomedical research
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92812 2018 31 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers in Biology and Medicine, Volume 92, 1 January 2018, Pages 1-8

ترجمه کلمات کلیدی
داده های باینری مرتبط الگوریتم ژنتیک، داده های با ابعاد بزرگ، تولید تعداد تصادفی، شبیه سازی رایانهای،
کلمات کلیدی انگلیسی
Correlated binary data; Genetic algorithm; High-dimensional data; Random number generation; Computer simulation;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم ژنتیک برای شبیه سازی داده های باینری همبسته از تحقیقات زیست پزشکی

چکیده انگلیسی

Correlated binary data arise in a large variety of biomedical research. In order to evaluate methods for their analysis, computer simulations of such data are often required. Existing methods can often not cover the full range of possible correlations between the variables or are not available as implemented software. We propose a genetic algorithm that approaches the desired correlation structure under a given marginal distribution. The procedure generates a large representative matrix from which the probabilities of individual observations can be derived or from which samples can be drawn directly. Our genetic algorithm is evaluated under different specified marginal frequencies and correlation structures, and is compared against two existing approaches. The evaluation checks the speed and precision of the approach as well as its suitability for generating also high-dimensional data. In an example of high-throughput glycan array data, we demonstrate the usability of our approach to simulate the power of global test procedures. An implementation of our own and two other methods were added to the R-package ‘RepeatedHighDim’. The presented algorithm is not restricted to certain correlation structures. In contrast to existing methods it is also evaluated for high-dimensional data.