دانلود مقاله ISI انگلیسی شماره 107804
ترجمه فارسی عنوان مقاله

شاخص های معاملاتی تجاری با عامل یادگیری تقویت

عنوان انگلیسی
Trading financial indices with reinforcement learning agents
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107804 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 103, 1 August 2018, Pages 1-13

ترجمه کلمات کلیدی
تقویت یادگیری، سیستم های چندگانه، روند تصمیم گیری مارکوف، مدیریت نمونه کارها،
کلمات کلیدی انگلیسی
Reinforcement learning; Multi-agent systems; Markov decision process; Portfolio management;
پیش نمایش مقاله
پیش نمایش مقاله  شاخص های معاملاتی تجاری با عامل یادگیری تقویت

چکیده انگلیسی

Intelligent agents are often used in professional portfolio management. The use of intelligent agents in personal retirement portfolio management is not investigated in the past. In this research, we consider a two-asset personal retirement portfolio and propose several reinforcement learning agents for trading portfolio assets. In particular, we design an on-policy SARSA (λ) and an off-policy Q(λ) discrete state and discrete action agents that maximize either portfolio returns or differential Sharpe ratios. Additionally, we design a temporal-difference learning, TD(λ), agent that uses a linear valuation function in discrete state and continuous action settings. Using two different two-asset portfolios, the first asset being the S&P 500 Index and the second asset being either a broad bond market index or a 10-year U.S. Treasury note (T-note), we test the performance of different agents on different holdout (test) samples. The results of our experiments indicate that the high-learning frequency (i.e., adaptive learning) TD(λ) agent consistently beats both the single asset stock and bond cumulative returns by a significant margin.